翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

regular ring : ウィキペディア英語版
regular ring

In commutative algebra, a regular ring is a commutative noetherian ring, such that the localization at every prime ideal is a regular local ring: that is, every such localization has the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension.
Jean-Pierre Serre defines a regular ring as a commutative noetherian ring of finite global homological dimension and shows that this is equivalent to the definition above. For regular rings, Krull dimension agrees with global homological dimension.
Examples of regular rings include fields (of dimension zero) and Dedekind domains. If ''A'' is regular then so is ''A''(), with dimension one greater than that of ''A''.
A regular ring is reduced〔since a ring is reduced if and only if its localizations at prime ideals are.〕 but need not be an integral domain. For example, the product of two regular integral domains is regular, but not an integral domain.〔http://math.stackexchange.com/questions/18657/is-a-regular-ring-a-domain〕
== Noncommutative ring ==
A not necessarily commutative ring is called regular if it has finite global dimension, has polynomial growth (finite GK dimension) and is Gorenstein.
See also: elliptic algebra

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「regular ring」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.